255 research outputs found

    The expanding territories of condensin II.

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/15384101.2015.106335

    Effect of crowning radius on rolling contact fatigue strength for traction drive elements

    Get PDF
    A simulation of the rolling contact fatigue strength of a traction drive element was developed. This simulation accounts for both the distribution of sizes of inclusions in the element material and the influence of traction forces at the element surface. The shear strength of the matrix structure surrounding an inclusion was estimated with an equation. The hardness distribution and the Weibull distribution of inclusion dimensions, which are necessary parameters to calculate the rolling contact fatigue strength, were determined by observation of an actual test specimen. The purpose of this report is simulations to evaluate the effect of the crowning radius on the rolling contact fatigue strength and the torque capacity. The simulations were carried out by varying the crowning radius of the virtual roller. To consider the effect of the crowning radius, a simulated two-dimensional virtual roller, which has actual material properties, was modified to a roller multilayered toward the axial direction. The simulation assuming the actual roller led to a difference of 1.0% from the experimental rolling contact fatigue strength. This difference was 2.4 points smaller than the result for the two-dimensional virtual roller. The rolling contact fatigue strength decreased with increasing crowning radius for two reasons. One was the increase in the number of inclusions under the high stress due to the increasing crowning radius. The other was the expansion of the portion of the roller subject to high stresses down to a depth having small hardness. However, the torque capacity calculated from the contact force resulting in failure increased with the increasing crowning radius

    Metabolomic changes during cellular transformation monitored by metabolite-metabolite correlation analysis and correlated with gene expression.

    Get PDF
    To investigate metabolic changes during cellular transformation, we used a 1H NMR based metabolite-metabolite correlation analysis (MMCA) method, which permits analysis of homeostatic mechanisms in cells at the steady state, in an inducible cell transformation model. Transcriptomic data were used to further explain the results. Transformed cells showed many more metabolite-metabolite correlations than control cells. Some had intuitively plausible explanations: a shift from glycolysis to amino acid oxidation after transformation was accompanied by a strongly positive correlation between glucose and glutamine and a strongly negative one between lactate and glutamate; there were also many correlations between the branched chain amino acids and the aromatic amino acids. Others remain puzzling: after transformation strong positive correlations developed between choline and a group of five amino acids, whereas the same amino acids showed negative correlations with phosphocholine, a membrane phospholipid precursor. MMCA in conjunction with transcriptome analysis has opened a new window into the metabolome.We acknowledge the support of The University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s11306-015-0838-
    • …
    corecore